
‭Noelle Davis, Saniya Dawn, and Sarah Goldman‬

‭CS 230‬

‭5/3/23‬

‭Final Project Report: Gender Imbalances in Hollywood Movies‬

‭1)‬ ‭Title‬

‭The title of our project is Gender Imbalances in Hollywood Movies. The names of our team‬

‭members are as follows: Noelle Davis, Saniya Dawn, and Sarah Goldman. We would like to‬

‭thank the professors and TAs who helped us: Takis Metaxas, Stella Kakavouli, Smaranda Sandu,‬

‭Jada Onwuta, Becky Chen, Carrie Wang, and Maria Ordal.‬

‭2)‬ ‭Introduction‬

‭In this project, we were tasked with implementing a HollywoodApp that had numerous‬

‭functionalities. The app had to be able to‬‭create‬‭a graph‬‭linking actors with the movies they‬

‭acted in. We were also tasked with‬‭generating a value‬‭for each inputted movie which would‬

‭inform the user whether or not that movie had over 48% women in its cast; a value of 1 indicates‬

‭the movie‬‭passed.‬‭Additionally, the app had to be‬‭able to‬‭return the list of movies‬‭a given actor‬

‭had acted in, as well as‬‭return the list of actors‬‭in a given movie. Finally, the app had to be able‬

‭to‬‭find the‬‭degree of separation‬‭between a given actor‬‭a1 and another given actor a2, meaning‬

‭the number of movies that separated those two actors, and return that number.‬

‭We would like to cite the many helpful references we utilized while completing this‬

‭project: the‬‭CS 230 slides‬‭by the Wellesley CS 230‬‭team,‬‭reading materials about ways to‬

‭measure gender imbalances in Hollywood films‬‭from‬‭statistical analysis website‬

‭FiveThirtyEight,‬‭descriptions of the data set files‬‭from the FiveThirtyEight Github Repository,‬

‭the Java Foundations textbook by John Lewis, Peter DePasquale, and Joseph Chase,‬‭reading‬

‭materials‬‭from MIT 6.101 about searching, a helpful‬‭article about breadth-first versus depth-first‬

‭searches in Java‬‭from Codecademy, and the‬‭Java API‬‭,‬‭specifically the API for Iterator, Queue,‬

‭Hashtable, LinkedList, Vector, Scanner, Set, String, IOException, and File.‬

https://cs.wellesley.edu/~cs230/
https://projects.fivethirtyeight.com/next-bechdel/
https://projects.fivethirtyeight.com/next-bechdel/
https://github.com/fivethirtyeight/data/tree/master/next-bechdel
https://py.mit.edu/spring23/readings/flood_fill
https://py.mit.edu/spring23/readings/flood_fill
https://www.codecademy.com/article/tree-traversal
https://www.codecademy.com/article/tree-traversal
https://docs.oracle.com/javase/7/docs/api/

‭3)‬ ‭Method‬

‭1.1‬

‭We wrote‬‭classes Movie and Actor‬‭to implement the‬‭Hollywood App class. They‬

‭absolve the need for repetitive code in Hollywood App.‬

‭Class Movie creates a‬‭HashTable‬‭in which the keys‬‭are the movie names and the values‬

‭are its actors. To implement this, we created a Hashtable<String, Vector<String>> called‬

‭movieTable. In our constructor movieTable is initialized to be used in the method‬

‭fillMovieTable, which fills the hashtable as described above. It does this by utilizing a Scanner to‬

‭read an input File‬‭if it can be found. A new Vector<String>‬‭is created for each line in the input‬

‭file. Then each line is split by [“,”], with the result put into a String [] wordArray.‬‭The zeroth‬

‭element of wordArray is the movie name and the first is the actor name.‬‭The method then‬

‭checks if the hashtable already contains the movie name.‬‭If not, the movie and actor are‬

‭added to the HashTable. Otherwise, the actor’s name is added to the existing Vector of actors via‬

‭a holder Vector<String> currentActors and the use of .add(actor). We then replace the movie’s‬

‭value with the updated Vector.‬

‭Class‬‭Actor‬‭is similar to‬‭Movie‬‭as it also creates‬‭a‬‭Hashtable <‬‭String, Vector<String>>‬‭;‬

‭however, in this case, the keys are the actor names and the values are the movies they’ve been in.‬

‭Both classes define getters of both the keys and key values. The method getKeys() uses a‬

‭Vector<String> called movieNames as the return value. The Vector is filled via an‬

‭Iterator<String> that iterates through the‬‭Set‬‭of‬‭key values returned by calling .keySet() on‬

‭movieTable. The method then returns Vector<String> movieNames. To get the key values, the‬

‭method getKeyValues() uses a specific movie name key to return the values stored at that‬

‭element. It does this by calling .get on movieTable. The implementation is similar in Actor, but‬

‭there is no iterator used in getKeys for the Actor class. There is a Set<String> called actorNames‬

‭that gets the values of actorTable by calling .keySet(), and then it returns actorNames. The‬

‭method getKeyValues() is the same except it takes an actor’s name to return the value stored in‬

‭actorTable.‬

‭Both classes are utilized in the Hollywood App class.‬ ‭In the constructor of the‬

‭HollywoodApp class, we initialize Vectors, HashTables, and Graphs. The string passingMov gets‬

‭the method of fortyEightPassers, and the actedWithTable gets the method actedWithT().‬

‭1.2‬

‭We created this graph with the‬‭saveTGF method from‬‭AdjListsGraph,‬‭and used‬

‭organic layout in yEd. In the method makeGraph in our HollyWoodApp class, we initialized our‬

‭Vector<String> keys by setting it to the keys of the Movie table mTable, using the .getKeys()‬

‭method. A nested for loop was then used to set the elements of keys into a String movie, and‬

‭movie was then added to the AdjListsGraph moviesAndActors using addVertex() and‬

‭elementAt(). Then a Vector<String> actors was made and set to the keyValues of the mTable‬

‭using getKeyValues(). A nested for loop went through actors to add the actor as a vertex and to‬

‭add an edge between the actor and movie. We noticed that we obtained a bipartite graph. Actors‬

‭are connected to movies and movies are connected to actors, but movies and movies are not‬

‭connected, and actors and actors are not connected. We wondered how this would affect‬

‭traversals/paths.‬

‭1.3: fortyEightPassers‬

‭To answer this question, we created the fortyEightPassers method in HollywoodApp,‬

‭which returns a string denoting which films have over 48% women in their casts. As noted‬

‭previously, our Actor class creates a hashtable in which the keys are the actor names and the‬

‭values are the actor’s gender followed by all the movies they have acted in. Our Vector<String>‬

‭keys holds all the movie titles with the actors as values. We set our Vector<String>‬

‭moviePassers, and then using a for loop we‬‭go through‬‭each value in keys and make two‬

‭double variables called totalCount and femaleCount‬‭.‬‭TotalCount is set to the size of the‬

‭Vector<String> actors. With our first for loop, we set the value of the String movie to the‬

‭elementAt() keys, and the Vector<String> actors that gets the keyValues from a movie and‬

‭setting that value into actors by calling getKeyValue() on mTable.‬

‭As the‬‭second for loop goes through actors‬‭, it sets‬‭each value of actor to a String actor‬

‭using ,get(), and another Vector<String> called genderV is made that gets the first element of the‬

‭key Value of aTable, which is found by using the .getKeyValue() method, and then using the‬

‭.firstElement() method on that. Within the nested for loop there is an if statement, saying that for‬

‭each String “female” in genderV, add 1 to femaleCount. Going back into the original for loop,‬

‭another if statement is made that if femaleCount decided by the total count is greater than the‬

‭threshold value, we add that movie key to moviePassers. There is a final for loop that goes‬

‭through moviePassers, and it adds each element of moviePassers onto the String passingMovies,‬

‭and in the end this method returns a string of all the movies that have 48% women in their cast.‬

‭2.1: allMovies‬

‭To find the list of movies an actor has played in, given an actor,‬‭we used our previously‬

‭implemented Actor class.‬‭We created an instance of‬‭Actor named aTable that was initialized in‬

‭our constructor using the file we wanted. Moving down to the contents of the method itself, we‬

‭created a String named movieString to return our answer. We then created a‬

‭Vector<Vector<String>> named actorValues to hold all the values in the aTable (actor table) for‬

‭the given actor. We then‬‭extracted just the Vector<String>‬‭of movies‬‭by taking the last‬

‭element of actorValues (since the gender of the actor was irrelevant for this problem) and storing‬

‭that under the variable name actorMovies. We then‬‭looped through the movies in actorMovies‬

‭and added them to the movieString, returning the movieString at the end.‬

‭2.2: allActors‬

‭To find the list of all actors who have played in a given movie,‬‭we used our previously‬

‭implemented Movie class.‬‭We created an instance of‬‭Movie named mTable that was initialized‬

‭in our constructor using the file we wanted. Moving down to the contents of the method itself,‬

‭we created a String named actorString to return our answer. We then created a Vector<String>‬

‭named movieValues to hold all the values in the mTable (movie table) for the given movie. We‬

‭then‬‭looped through the actors in movieValues‬‭and‬‭added them to the actorString, returning‬

‭the actorString at the end.‬

‭2.3: degreeOfSeparation‬

‭In order to solve the degree of separation problem, we first created a method called‬

‭actedWithT. This method takes no inputs. We utilize several data structures in this method of‬

‭type Hashtable<String, Vector<String>> and Vector<String>. The variable actedWithTable is a‬

‭Hashtable and the variables movieNames and actedWith are initialized in this method. We then‬

‭use a series of nested loops. The‬‭first loop iterates‬‭through each movie name.‬‭For each index,‬

‭i, in the Vector,‬‭allActors‬‭gets the return of .getKeyValues()‬‭(the actors who acted in the movie);‬

‭we also store the String‬‭currentMovie‬‭, the current‬‭index location in the movieNames Vector.‬

‭With the Vector<String> allActors having all the actors for each movie,‬‭the second loop‬

‭iterates through each element stored.‬‭At each index,‬‭k, the‬‭String current Actor is updated‬

‭to that value and a Vector<Vector<String>> named‬‭otherActorsAndMovies‬‭is initialized.‬‭In the‬

‭third loop, we iterate through all the elements again to avoid putting the actor in its own‬

‭value.‬‭This third loop contains an if statement that‬‭considers if other_ele is equal to the current‬

‭actor. If so, the element is skipped. If not, otherActors adds the current value of other_ele and the‬

‭current movie. The holder, otherActorsandMovies adds the otherActors Vector.‬

‭We then‬‭continue in the second loop‬‭to an if statement‬‭that states if actedWithTable does‬

‭not contain the key of our currentActor, we will‬‭input‬‭(via .put()) our current actor as the key‬

‭and otherActorsAndMovies as the values.‬‭The else statement‬‭states, if our actedWithTable‬

‭already contains the key of our currentActor name, we create another Vector<Vector<String>>‬

‭named heldActors, which gets the current elements of our actedWithTable at the currentActor.‬

‭We then iterate through otherActorsAndMovies. If heldActors does not contain the‬

‭otherActorsAndMovies at the index, h, of the for loop, it will add otherActorsAndMovies to‬

‭heldActors, which updates the co stars of our current actor. We then‬‭update our‬

‭actedWithTable to hold our currentActor and heldActors, via .replace().‬

‭When all of the actors are in the HashTable with all of the costars, the method returns‬

‭actedWithTable.‬

‭The getter getActedWith returns the values held at the actor name key in actedWithT.‬

‭As requested, degreeOfSeparation finds the path between two given actors and returns‬

‭the integer of the path length minus one (only if the path length is greater than 0). To implement‬

‭this, we made a LinkedQueue<Vector<Vector<String>>>‬‭bfsPaths‬‭, a‬

‭LinkedList<Vector<String>>‬‭visited‬‭, which is used‬‭to ensure that the same vertex is not‬

‭searched twice, and initialized the Vector<Vector<String>>‬‭moviePath‬‭. We also made a‬

‭Vector<Vector<String>> actorAndMovieName and a Vector<String> a1AndMovie.‬

‭There are two base cases in our implementation. The first is an if statement that returns a‬

‭0 if actor 1 (‬‭a1‬‭) and actor 2 (‬‭a2‬‭) are the same. The‬‭second utilizes another‬

‭Vector<Vector<String>> called vals that gets who a1 acted with. A for loop is used to go through‬

‭the values. If any of the elements contain the other actor’s name, the method will return 0.‬

‭Following the two base cases we use the .add() method to add actor 1 and a null to a1AndMovie.‬

‭This is so we don't return a value for the connection between actor 1 and actor 1. Then‬

‭a1AndMovie is added to actorAndMovieName. In bfsPaths, we enqueue actorAndMovieName,‬

‭and add a1AndMovie to visited.‬

‭From there, we created a‬‭while loop that ends when‬‭our queue is empty,‬‭as that would‬

‭indicate that we have gone through all options and there is no path between a1 and a2. While the‬

‭queue is not empty, we iterate through each path in the queue. For each path, we‬‭dequeue‬‭,‬‭add‬

‭the last element in the path to the visited LinkedList, and search the last element’s‬

‭neighbors for a2,‬‭storing those neighbors in the variable‬‭neighbors‬‭. If the last element’s‬

‭neighbors contain a2, we have found our path, so we‬‭return the length of the path‬‭(minus one‬

‭to account for our base case being 0.) Otherwise, we‬‭go through each neighbor‬‭in neighbors to‬

‭make sure that we haven’t visited‬‭them yet,‬‭merge‬‭them with the dequeued path,‬‭and‬‭add‬

‭that new path to the queue.‬‭We repeat this process‬‭until we either find the path or run out of‬

‭paths to search, in which case the method returns -1.‬

‭4)‬ ‭Collaboration‬

‭Our group met 8 times over the course of the project. Although two of these meetings were for‬

‭planning purposes, we spent a total time of‬‭30+ hours‬‭coding, brainstorming, debugging, and‬

‭refactoring, not including times when members went to office hours alone.‬

‭We completed the work as follows:‬

‭Noelle brainstormed and wrote pseudocode for all three of the classes. In the Actor and Movie‬

‭classes she worked on the creation of the HashTables of actor and movie values, the toString()s,‬

‭and the getters and setters. In the Hollywood App she worked on makeGraph(),‬

‭fortyEightPassers(), allMovies(), allActors(), actedWithT(), getActedWith(), and‬

‭degreeOfSeparation() . In addition she worked on JavaDoc and test cases for all of the classes as‬

‭well as in-line comments. Outside of the code, she went to office hours with Stella, Takis, Jada,‬

‭Carrie, Becky, and Maria. Finally, she also wrote part of the final project report.‬

‭Saniya helped come up with ideas and pseudocode for HollywoodApp class. She worked on the‬

‭creation of degreeOfSeparation(), actedWithT(), allMovies(), allActors(), makeGraph(), and the‬

‭toString() methods. She also worked on javadoc, in-line comments, testing cases, and writing the‬

‭final report. She also attended office hours with Carrie, Becky, and Stella.‬

‭Sarah brainstormed and wrote pseudocode for all three classes. She also worked on the creation‬

‭of the Actor and Movie classes; specifically, she worked on HashTable creation and the‬

‭toString() methods of those classes. In the Hollywood App she worked on makeGraph(),‬

‭fortyEightPassers(), actedWithT(), getActedWith(), and degreeOfSeparation(). She also worked‬

‭on JavaDoc, wrote in-line comments, and helped with brainstorming testing cases. Outside of‬

‭coding, she went to office hours with Stella, Smaranda, Jada, Carrie, Becky, and Maria, and‬

‭wrote part of the final project report.‬

‭We executed the work as described above.‬

